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Deep Research Agents are a prominent category of LLM-based agents. By autonomously orchestrating
multistep web exploration, targeted retrieval, and higher-order synthesis, they transform vast amounts of
online information into analyst-grade, citation-rich reports—compressing hours of manual desk research
into minutes. However, a comprehensive benchmark for systematically evaluating the capabilities of these
agents remains absent. To bridge this gap, we present DeepResearch Bench, a benchmark consisting
of 100 PhD-level research tasks, each meticulously crafted by domain experts across 22 distinct fields.
Evaluating DRAs is inherently complex and labor-intensive. We therefore propose two novel methodologies
that achieve strong alignment with human judgment. The first is a reference-based method with adaptive
criteria to assess the quality of generated research reports. The other framework is introduced to evaluate
DRA’s information retrieval and collection capabilities by assessing its effective citation count and overall
citation accuracy. We have open-sourced DeepResearch Bench and key components of these frameworks at
https://github.com/Ayanami0730/deep_research_bench to accelerate the development of practical LLM-
based agents.

Figure 1: Overview of agent performance on DeepResearch Bench. Left: Generated report quality scores across
evaluation dimensions. Right: Agent citation accuracy and average number of effective citations.
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1 Introduction

We now enter a new phase of AI [35], a period marked by comprehensive advances in the capabilities of the large
language model (LLM) [5, 20]. These advancements enable the construction of LLM-based Agent systems designed to
tackle increasingly complex tasks [15, 8, 34]. In this evolving landscape, defining tasks that genuinely reflect real-world
demands and designing robust evaluation methodologies to measure the progress of these Agent systems are becoming
critically important. Deep research represents one such well-defined task domain, with Deep Research Agents (DRAs)
[13, 37, 24] emerging as the most widely utilized LLM-based agents today. Users leverage these agents to enhance
their productivity significantly.

However, comprehensively evaluating the capabilities of these DRAs presents substantial challenges. Because their
internal reasoning and information retrieval processes are not transparent, the final generated report becomes the primary
interface through which their overall performance can be assessed. Moreover, evaluating the quality of these extensive
research reports remains an open-ended problem, as establishing a definitive ’ground truth’ or standard answer for
complex research queries is almost impossible.

These demanding evaluation requirements for DRAs pose a significant challenge for existing evaluation frameworks,
which often fall short of offering a dedicated assessment of the multifaceted capabilities of such agents [14]. Current
benchmarks typically focus on assessing isolated capabilities—such as web browsing and information retrieval
[28, 38, 39], or generative abilities disconnected from real-time information acquisition [23, 1, 31].

To fill this gap in evaluating end-to-end research agents, we introduce DeepResearch Bench, a 100-task benchmark
spanning 22 domains, with each task meticulously crafted and iteratively refined by domain experts. To ensure this
benchmark authentically reflects real research needs, we carefully determine the specific number of tasks from each
topic domain. This is guided by a statistical analysis of over 96,000 real-world user queries, adhering to the pipeline
illustrated in Figure 2(a).

Building on this dataset, we introduce two novel, highly human-aligned evaluation methodologies to comprehensively
assess both the quality of final reports generated by DRAs and their ability to gather web information effectively. The
first one is a Reference-based and Adaptive Criteria-driven Evaluation framework with Dynamic Weighting (denoted as
RACE for ease of subsequent reference), which targets the assessment of report generation quality. And the other one
is a framework for Factual Abundance and Citation Trustworthiness (denoted as FACT), which focuses on evaluating
information retrieval and citation accuracy. Overview results are shown in Figure 1. Furthermore, we believe
these methodologies are not confined to deep research scenarios. RACE can serve as a general framework for
evaluating text generation capabilities, while FACT offers a robust approach for assessing the coverage and reliability
of information retrieved by LLMs.

Our primary contributions are as follows:

• We present DeepResearch Bench, the first specialized benchmark for evaluating Deep Research Agents, con-
structed through a systematic process that reflects authentic user needs.

• We further propose RACE and FACT, two novel evaluation frameworks that respectively assess the report
generation quality and the information retrieval abilities of Deep Research Agents.

• We conduct comprehensive human studies to validate the reliability of our frameworks and publicly release the
benchmark and evaluation protocols to foster future research.

2 DeepResearch Bench: Topic Distribution Analysis & Data Collection

2.1 Topic Distribution Analysis

Deep Research Agents (DRAs) are intended to serve actual human research needs. Therefore, to effectively test their
capabilities, the design of DeepResearch Bench should be grounded in the real-world distribution of human research
task demands. To obtain this distribution, we collect an in-house dataset of 96,147 raw user queries from interactions
with web search-enabled LLM Chatbot. To ensure user privacy, all raw query logs underwent rigorous anonymization,
removing personally identifiable information such as user IDs, IP addresses, and session metadata.

We then define the concept of Deep Research tasks as problems requiring agents to conduct multiple rounds of web
searches, gather information, perform analysis, and produce high-quality reports. Guided by this definition, we employ
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Figure 2: Overview of DeepResearch Bench. (a)Distribution analysis and dataset construction pipeline. (b)Overview of
RACE(a Reference-based Adaptive Criteria-driven Evaluation framework with Dynamic Weighting) (c)Overview of
FACT (a Framework for Factual Abundance and Citation Trustworthiness)

DeepSeek-V3-0324 [4] to conduct filtering, identifying queries that aligned with our deep research requirements. This
process ultimately yields a dataset of 44,019 queries conforming to our deep research task definition.

To categorize the deep research queries, we adopt the topic taxonomy proposed by WebOrganizer [29], selecting 22
distinct topic domains for this classification. We then employ DeepSeek-V3-0324 to classify these 44,019 queries into
the 22 selected topic domains. By statistically aggregating the LLM’s classification results, we obtain the distribution of
these queries across the various topics. This distribution, visualized in Figure 3, indicates the real-world user demand
for deep research within these domains.

2.2 Benchmark Task Collection

Guided by the real-world user demand distribution, we first determine the target number of tasks for each topic domain
within the DeepResearch Bench dataset. Subsequently, considering the significant resources required to run deep
research agents and evaluate their results, we proportionally compress this determined distribution to form a final dataset
of 100 tasks, 50 in Chinese and 50 in English. This compression process meticulously ensures that the benchmark
maintains the same topical balance as the observed real-world distribution.

Once the target task count for the topic domain is determined, our focus shifts to constructing research tasks that are
highly challenging and firmly grounded in authentic research demands. This process specifically aims to test the upper
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limits of the Deep Research Agents’ capabilities. We invite Ph.D. or senior practitioners with more than five years
of relevant domain experience to propose candidate tasks, as shown in Figure 4. All submissions undergo a manual
screening by our team to verify their quality, clarity, complexity, and alignment with our definition of deep research.
This rigorous vetting process yields the 100 high-quality benchmark tasks that comprise the DeepResearch Bench.

Figure 3: Topic distribution of the 44,019 filtered deep-research tasks. Left: Donut chart showing the proportional
share of each topic domain; the Others slice aggregates the least-represented categories. Right: Bar chart listing the
absolute task counts for all 22 domains.

Figure 4: Two example tasks from DeepResearch Bench.

3 Evaluation Methodology

Our evaluation methodology focuses on two critical aspects: their capabilities in information retrieval and collection,
as well as the quality of the final reports they generate. To assess these respective dimensions, we developed two
complementary frameworks, RACE and FACT.

3.1 RACE: A Framework for Report Quality Evaluation

Evaluating long-form research reports presents significant challenges. Existing approaches using fixed checklists [23]
or static rubrics [25, 1] struggle to adapt to diverse tasks, specialized domains, and nuanced quality aspects of deep
research tasks. To address this, we introduce our Reference-based Adaptive Criteria-driven Evaluation framework with
Dynamic Weighting (RACE), leveraging the LLM-as-a-Judge method [36]. RACE offers a more adaptive and robust
evaluation by first dynamically generating task-specific weights and criteria. It then employs a reference-based scoring
approach, comparing the target report with a high-quality reference. Finally, a relative score is computed to assess the
quality of the target report.
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Dynamic Weight & Adaptive Criteria Generation. Directly prompting LLMs to generate task-specific criteria from
scratch can lead to results that deviate significantly from the intended assessment goals. Therefore, we first establish four
top-level orthogonal dimensions based on domain expertise: Comprehensiveness (COMP), Insight/Depth (DEPTH),
Instruction-Following (INST), and Readability (READ). Detailed definitions are provided in the Appendix B. As
illustrated in Figure 2(b), given task t, the Judge LLM derives task-specific dimension weights by averaging weights
w

(j)
d obtained over T trials for each dimension d ∈ {COMP, DEPTH, INST, READ}:

Wd =
1

T

T∑
j=1

w
(j)
d (1)

These final weights, Wd, ensure that evaluation aligns with the task’s intent. Subsequently, for each dimension
d, the Judge LLM generates a set of Kd tailored criteria {cd,k} and their corresponding weights {wd,k} (where∑Kd

k=1 wd,k = 1), which are clear and actionable for evaluating the report within that dimension.

Reference-Based Scoring. Preliminary experiments suggest that scoring reports in isolation often yields insufficiently
discriminative results; models tend to assign uniformly high scores, thereby masking genuine quality variations. To
mitigate this, RACE adopts a reference-based scoring strategy. For each task t, a high-quality report Rref is selected as
a reference. All generated criteria {cd,k} across all dimensions are aggregated into a comprehensive list Ct. The Judge
LLM then analyzes the target report Rtgt and the reference report Rref against each criterion c ∈ Ct. This yields lists of
scores for both reports for each criterion, which are then used for final score calculation:

({stgt,c}c∈Ct , {sref,c}c∈Ct) = JudgeLLM(t, Rtgt, Rref , Ct) (2)

Overall Score Calculation. Finally, we compute the overall quality score of the target report. First, dimension-level
scores Sd(R) are calculated by weighting criterion-level scores sR,cd,k with criterion weights wd,k. Second, these
Sd(R) scores are weighted by dimension weights Wd to produce intermediate overall scores Sint(R). Finally, the target
report’s score Sfinal(Rtgt) is determined relative to the reference report’s score:

Sfinal(Rtgt) =
Sint(Rtgt)

Sint(Rtgt) + Sint(Rref)
(3)

3.2 FACT: A Framework for Web Retrieval Evaluation

To assess the factual grounding of report content and the agent’s effectiveness in retrieving and utilizing web-based
information, we introduce the framework for Factual Abundance and Citation Trustworthiness(FACT). This framework
evaluates DRAs through the following automated steps:

Statement-URL Pair Extraction and Deduplication. We employ a Judge LLM to extract discrete statements from
reports generated by DRAs with their corresponding cited source URLs. Then, the Judge LLM examines the pairs to
identify cases where multiple statements associated with the same URL describe exactly the same fact. In such cases,
only one representative Statement-URL pair is retained, ensuring each unique factual claim is represented only once.

Support Judgment. Each unique Statement-URL pair undergoes a support evaluation. We retrieve the textual
content of the webpage using the Jina Reader API. Then, the Judge LLM assesses whether this content provides
sufficient evidence to support the statement. This results in a binary judgment (’support’ or ’not support’) for each pair,
determining whether the citation accurately grounds the claim.

Calculation of Citation Metrics. Based on these support judgments, we calculate two primary metrics. Citation
Accuracy (C. Acc.) measures the precision of an agent’s citations, reflecting its ability to ground statements with
appropriate sources correctly. And Average Effective Citations per Task (E. Cit.) quantifies the average amount
of valuable, verifiably supported information an agent retrieves and presents per task. For detailed calculation
methodologies, please refer to Appendix E.
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4 Experiments

4.1 Experimental Setup

Implementation Details When employing the RACE framework, an initial pre-processing step involves cleaning
citation formatting from the generated reports, as overly lengthy or complex citation styles can adversely affect the
Judge LLM’s scoring process. For RACE evaluation tasks, we utilize Gemini-2.5-pro as the Judge LLM. As for the
FACT framework, Gemini-2.5-flash is employed for both Statement-URL pair extraction and support judgment,
which is sufficient in capabilities while more economical for the token-consuming citation verification task. The
reference reports (Rref ) used in RACE’s scoring methodology were selected from deep research articles generated by
the Gemini-2.5-pro-based Deep Research, as available in April 20253.

Evaluated Models In our work, we primarily evaluate four early-released Deep Research Agents: Gemini-2.5-pro-
based Deep Research, OpenAI Deep Research, Grok Deeper Search, and Perplexity Deep Research. Due to the lack of
transparency regarding the iteration cycles of these commercial products, we specify the data collection timeframe in
Appendix D.. Additionally, we evaluate several other models that are not specialized Deep Research Agents. These
include leading LLMs that provide built-in web search tools. Furthermore, for all such tested LLMs with search tools,
we standardize evaluation conditions by setting the search_context_size to high. More details on these configurations
can be found in Appendix G.2.

Table 1: Overall evaluation results of DeepResearch Bench. Bold denotes the highest score in each column for Deep
Research Agents (and for LLM with Search Tools within their respective section). Underlined denotes the second
highest.

Model RACE FACT

Overall Comp. Depth Inst. Read. C. Acc. E. Cit.

LLM with Search Tools

Claude-3.7-Sonnet w/Search 40.67 38.99 37.66 45.77 41.46 93.68 32.48
Claude-3.5-Sonnet w/Search 28.48 24.82 22.82 35.12 35.08 94.04 9.78
Perplexity-Sonar-Reasoning-Pro(high) 40.22 37.38 36.11 45.66 44.74 39.36 8.35
Perplexity-Sonar-Reasoning(high) 40.18 37.14 36.73 45.15 44.35 48.67 11.34
Perplexity-Sonar-Pro(high) 38.93 36.38 34.26 44.70 43.35 78.66 14.74
Perplexity-Sonar(high) 34.54 30.95 27.51 42.33 41.60 74.42 8.67
Gemini-2.5-Pro-Grounding 35.12 34.06 29.79 41.67 37.16 81.81 32.88
Gemini-2.5-Flash-Grounding 32.39 31.63 26.73 38.82 34.48 81.92 31.08
GPT-4o-Search-Preview (high) 35.10 31.99 27.57 43.17 41.23 88.41 4.79
GPT-4o-Mini-Search-Preview(high) 31.55 27.38 22.64 40.67 39.91 84.98 4.95
GPT-4.1 w/Search(high) 33.46 29.42 25.38 42.33 40.77 87.83 4.42
GPT-4.1-mini w/Search(high) 30.26 26.05 20.75 39.65 39.33 84.58 4.35

Deep Research Agent

Grok Deeper Search 40.24 37.97 35.37 46.30 44.05 83.59 8.15
Perplexity Deep Research 42.25 40.69 39.39 46.40 44.28 90.24 31.26
Gemini-2.5-Pro Deep Research 48.88 48.53 48.50 49.18 49.44 81.44 111.21
OpenAI Deep Research 46.98 46.87 45.25 49.27 47.14 77.96 40.79

4.2 Main Results

4.2.1 Evaluation on RACE Framework

As shown in Table 1, within the DRA category, Gemini-2.5-Pro Deep Research demonstrates leading overall performance
on the RACE framework. OpenAI Deep Research also exhibits strong capabilities, surpassing Gemini-2.5-Pro Deep
Research in the Instruction-Following dimension. This indicates that the different dimensions are somewhat decoupled
and that a sufficiently powerful Judge LLM can capture performance variations across these various dimensions. The
scores for these top agents are relatively close, which is characteristic of the reference-based relative scoring employed by

3We cannot confirm if there were any Deep Research model iterations during the reference collection period.
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Figure 5: Scores of different models across various topics and languages evaluated by RACE. Red indicates a higher
score while blue refers to a lower score.

RACE. However, this should not be concerning, as subsequent experiments 4.3 reveal a strong linear correlation between
these RACE scores and human judgments, suggesting the framework effectively captures meaningful performance
differences between models. In fact, these scores are highly linearly correlated with human evaluations, mapped to a
different reference frame (similar to how scores of 45 and 50 are compared to human scores of 90 and 100). Therefore,
we should focus on the rankings and proportional differences between the scores rather than the absolute score values. It
can be observed that OpenAI Deep Research and Gemini-2.5-Pro Deep Research show comparable performance, both
significantly outperforming the other two Deep Research Agents. And Perplexity Deep Research slightly outperforms
Grok Deeper Search.

Among the LLMs with Search Tools, Claude-3.7-Sonnet delivers an impressive performance, with its overall score
exceeding Grok Deeper Search, which is perhaps attributable to Claude being allowed to perform multi-turn web
searches. Perplexity-Sonar-Reasoning-Pro(high) also demonstrated similar performance. When viewing scores of
different models across topics in Figure 5, we can observe that individual models maintain relatively stable performance
across different topic tasks, demonstrating the robustness of our RACE evaluation framework. Interestingly, we discover
that for the Chinese task within the transportation topic, all models perform below their respective average levels,
indicating that this particular question set presents a higher difficulty level. The generated articles and corresponding
scores for all models can be viewed on the leaderboard hosted on Hugging Face Spaces.

4.2.2 Evaluation on FACT Framework

Viewing evaluation results by FACT in Table 1, Deep Research Agents, except Grok, tend to include more Effective
Citations than LLMs with Search Tools. Notably, Gemini-2.5-Pro Deep Research achieves an average of 111.21 effective
citations in its final reports, significantly outperforming other models. This finding is consistent with its top score in the
"Comprehensiveness" dimension of the RACE framework. However, the citation accuracy of Gemini-2.5-Pro Deep
Research and OpenAI Deep Research shows a notable gap compared to Perplexity Deep Research, indicating that
Perplexity Deep Research possesses a stronger capability to accurately recall relevant content from the retrieved text.
Among the LLMs with Search Tools, Claude-3.7-Sonnet achieves the second highest number of Effective Citations and
demonstrates strong Citation Accuracy; this also aligns with Claude-3.7-Sonnet w/Search achieving the best overall
score in the RACE framework.

4.3 Human Consistency

Evaluating the quality of deep research reports remains an open-ended task. Therefore, to validate the effectiveness of
our proposed RACE framework, we must assess its human consistency. We conduct experiments using 50 Chinese
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tasks from DeepResearch Bench, with reports generated by four distinct agents. For each task, three domain-expert
annotators score these reports. Further details are provided in Appendix G.1.

4.3.1 Human Data Collection

To gather human judgments, we recruit 70+ annotators with Master’s degrees and relevant domain expertise. Using a
custom interface, they evaluate reports across four dimensions and overall performance, guided only by basic scoring
criteria to minimize bias. Each annotator is limited to a maximum of three queries to ensure diverse perspectives.

4.3.2 Evaluation Metrics

To validate the consistency between evaluation methods and human judgment, we design four metrics that quantify
different aspects of alignment with human evaluations. The detailed calculation processes for all metrics are provided
in Appendix F.

Pairwise Agreement Rate This metric measures how often our evaluation method’s preferences match human
experts’ preferences when comparing pairs of reports. It reflects the reliability of our framework in replicating human
comparative judgments across all tasks.

Overall Pearson Correlation This metric quantifies the linear relationship between average model scores from our
evaluation method and those from human experts. It demonstrates how well our framework’s absolute scoring aligns
with human evaluation across all deep research assistant models.

Filtered Average Pearson & Spearman Correlation When computing per-task average correlation coefficients,
individual inconsistencies can have a more pronounced impact on the results compared to global correlations. To
address this issue, we first filter out tasks where expert judgments show low agreement by removing tasks with negative
Intraclass Correlation Coefficients (ICC < 0). The ICC is a statistical measure of rater consistency, and negative
values indicate poor inter-rater reliability. After applying this filtering criterion, 37 tasks (out of the original set)
remained in our experiment, forming a subset with demonstrably higher expert consensus. We then compute two
complementary metrics: the Filtered Average Pearson Correlation (FAP) and the Filtered Average Spearman Correlation
(FAS). Together, these filtered metrics provide a more robust assessment of how well automated evaluation aligns with
consistent human judgment across different tasks.

Table 2: Comparison of human consistency scores across different evaluation methods. Prefixed with ’-’, indicating
the removal of specific components from the full framework. PAR: Pairwise Agreement Rate; OPC: Overall Pearson
Correlation; FAP: Filtered Average Pearson; FAS: Filtered Average Spearman. All metrics are percentages where
applicable. Best scores for each metric among automated methods are in bold.
Evaluation Method PAR OPC FAP FAS Overall Score

Vanilla Prompt 58.89 98.89 40.30 43.75 60.46

RACE(Full) 71.33 99.54 60.24 59.12 72.56
- No Criteria Weights 70.67 99.62 59.83 56.27 71.60
- No Dim Weights 70.89 99.54 60.11 57.22 71.94
- No Weights 71.11 99.69 59.46 58.17 72.11
- No Reference 66.56 97.46 57.51 51.23 68.19

Reverse Position 69.56 97.20 56.75 55.49 69.75
Static Criteria 68.33 98.73 57.86 57.70 70.65

Human Inter-Agreement 68.44 - - - -

4.3.3 Comparison of Different Evaluation Methods

Given that existing evaluation methods are generally unsuitable for assessing deep research reports, our experiments
focus on comparing the human consistency of several RACE variants against a vanilla prompt baseline. We evaluate
the following methods: RACE (Full), Vanilla Prompt (direct scoring by Judge LLM), ablation variants, Reverse
Position (swapping reference and target report positions), and Static Criteria (using fixed criteria). As shown in Table 2,
RACE(Full) exhibits the strongest overall performance, significantly outperforming both the vanilla baseline and other
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RACE variants. Notably, its Pairwise Agreement Rate also surpasses the inter-agreement rate observed among human
experts. These results collectively demonstrate that RACE can reliably and accurately evaluate deep research reports,
achieving high human consistency efficiently.

4.3.4 Comparison of Different Judge LLM

Leveraging the RACE framework, we further compare the performance and cost of several leading proprietary LLMs
when used as the Judge LLM. As detailed in Table 3, Gemini 2.5 Pro Preview not only achieves the best overall
performance but also maintains a competitive average cost ($0.13 per query), only higher than that of o4-mini.
Therefore, to effectively balance performance and cost, we select Gemini 2.5 Pro Preview as the Judge LLM in our final
framework.

Table 3: Comparison of human consistency scores and average cost using different Judge LLMs within the RACE(Full)
framework. PAR: Pairwise Agreement Rate; OPC: Overall Pearson Correlation; FAP: Filtered Average Pearson; FAS:
Filtered Average Spearman; Overall: Overall Score. Consistency metrics are percentages. The best for each metric are
highlighted in bold
Judge LLM PAR OPC FAP FAS Overall Avg. Cost ($)

Gemini 2.5 Pro Preview 71.33 99.54 60.24 59.12 72.56 0.13
o3 68.11 96.22 57.64 52.36 68.58 0.37
o4-mini 70.89 97.06 59.54 59.02 71.63 0.04
Claude 3.7 Sonnet 70.78 96.53 58.22 63.61 72.28 0.47

5 Related Work

LLM-based Agent Evaluation With the comprehensive advancement of LLM capabilities, LLM-based Agents
are increasingly being applied to real-world scenarios [18, 27], promising to significantly alter many aspects of daily
life and professional work. Yao’s blog [35] emphasizes that defining more realistic problems and designing novel
evaluation methods are crucial for developing more practical AI Agent systems. Numerous evaluations have already
been designed specifically for Agents, targeting diverse capabilities. These include evaluations for agents in scientific
domains [2, 12, 17, 3], creative writing [31, 1, 23], code generation and software engineering [10, 40, 22, 9, 32], and in
their roles as human assistants, often enhanced by capabilities such as web Browse and tool-use [28, 38, 33, 6, 26].
This perspective underscores our belief that constructing benchmarks specifically designed for Deep Research Agent,
grounded in real-world scenarios, alongside developing human-aligned evaluation methods, is urgently needed to guide
the development of AI agent systems.

Deep Research Agent Following the release of Deep Research Agents (DRAs) by OpenAI [19] and Google’s Gemini
[7], these agents gained significant attention and became one of the most widely deployed categories of LLM-based
agents. Subsequently, related works [11, 13, 37] quickly followed, introducing their own designed DRA frameworks.
However, the field still lacks a standardized evaluation methodology for these DRAs, preventing meaningful comparative
analysis of their capabilities. Among these works, some utilize QA datasets [21, 16, 30] as evaluation metrics; however,
this approach neither aligns with real-world DRA applications nor comprehensively assesses their broader capabilities.
Others employ the LLM-as-a-judge methodology [36], yet these efforts lack both a comprehensive framework design
and verification of human consistency. In contrast, our DeepResearch Bench addresses this gap by providing a systematic
and unified evaluation method with strong human consistency, thereby supporting subsequent DRA development and
assessment.

6 Conclusion

In this work, we introduce DeepResearch Bench, the first comprehensive benchmark for evaluating the report generation
and web retrieval capabilities of Deep Research Agents. Comprising 100 high-quality research tasks across 22 distinct
domains, this benchmark is meticulously curated to reflect authentic user needs. Our key evaluation frameworks,
RACE and FACT, have demonstrated high consistency with human judgments, affirming their reliability. We hope
DeepResearch Bench will guide developers and researchers in constructing more powerful and human-centric AI agent
systems that truly address genuine user requirements.
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A Limitations

While DeepResearch Bench and the RACE & FACT evaluation framework offer the first comprehensive assessment of
Deep Research Agents, several limitations remain.

Benchmark scale. Creating tasks that authentically reflect real research challenges requires substantial expertise
and effort. Each of our 100 tasks was developed by a verified PhD-level expert who underwent orientation on our
task specifications and participated in multiple rounds of refinement. Following rigorous internal quality screening,
only superior tasks were included. This meticulous process ensures high quality but inevitably constrains the dataset
size. Expanding the benchmark while maintaining our quality standards would enhance statistical robustness and topic
coverage, representing a key priority for future development.

Domain coverage bias. Despite our team’s breadth of expertise, inadvertent biases may have been introduced during
the curation and selection process. We implemented multiple review layers and explicit acceptance criteria to mitigate
this risk, yet we cannot guarantee complete impartiality. Future iterations will incorporate additional external reviewers
with specialized domain knowledge to achieve a more balanced representation across fields.

Human evaluation throughput. The assessment of research reports presents inherent challenges: a single report
may contain dozens of pages with dense technical content and sophisticated analysis. Even for PhD-level evaluators,
a thorough review typically requires 30–60 minutes, with the evaluation of multiple reports multiplying this burden.
For the current study, we limited human evaluation to three experts per task, covering 50 tasks across four agents
(totaling 600 reports). While sufficient to validate the RACE framework, this sample remains modest and susceptible to
individual variability. We intend to conduct more extensive annotation campaigns to strengthen statistical confidence
and refine our automated metrics, thereby maintaining alignment with human judgment.

Broader Impact Our work on DeepResearch Bench aims to significantly accelerate research and innovation by
providing a robust framework for developing more capable Deep Research Agents (DRAs). This can democratize
access to advanced research methodologies, empowering a wider range of users across various domains. However, the
advancement of powerful DRAs also presents societal challenges that warrant careful consideration. These include the
potential for generating sophisticated misinformation if not rigorously validated, the risk of over-reliance, which could
lead to a decline in critical thinking and manual research skills, and the possibility of amplifying biases inherent in
the underlying models and the vast web data they process. DeepResearch Bench, with its multifaceted evaluation that
includes factual grounding (FACT) and quality assessment (RACE), is designed as a step towards mitigating such risks
by fostering the development of more reliable, transparent, and responsible AI agents. Continuous vigilance, ongoing
research into AI safety and ethics, and multi-stakeholder engagement will be crucial to ensure these powerful tools are
developed and deployed in a manner that benefits society while minimizing potential harms.

B Definitions of Evaluation Dimensions in RACE

The RACE framework evaluates research reports based on four top-level dimensions. Their definitions are provided in
Table 4.

Table 4: Definitions of Core Evaluation Dimensions for Report Quality
Dimension Description

Comprehensiveness (COMP) Article covers key areas of the industry, ensures overall understanding, and does not
omit important parts.

Insight/Depth (DEPTH) Article deeply analyzes causes, impacts, and trends, providing valuable insights.
Instruction-Following/Relevance (INST) Article closely follows the research topic and directly answers questions.
Readability (READ) Article has a clear structure, fluent language, and is easy to understand.

C Judge LLM Selection for the FACT Framework

The FACT framework employs a Judge LLM for crucial automated steps: Statement-URL Pair Extraction and
Deduplication, followed by Support Judgment. The selection of Judge LLM is pivotal, aiming to balance evaluation

17



accuracy with operational costs, especially given the significant token consumption inherent in these processes. To
determine an optimal model for these tasks, we specifically evaluated Gemini-2.5-Flash. Its judgments were
compared against human evaluations on a randomly sampled set of 100 statement-URL pairs derived from our
benchmark tasks. This comparison demonstrated strong agreement with human annotators: Gemini-2.5-Flash’s
judgment aligned with human ’support’ determinations in 96% of cases and with ’not support’ determinations in 92%
of cases.

We further find out that the accuracy of Gemini-2.5-Flash in these FACT-specific evaluation steps is very close to
that of Gemini-2.5-Pro. The operations within the FACT framework (such as extracting statements from full reports
and analyzing webpage content for support) are known to be token-intensive, making cost-effectiveness a critical
consideration. Since Gemini-2.5-Flash demonstrated comparable accuracy to Gemini-2.5-Pro for these specific
tasks but at a more advantageous cost, we select Gemini-2.5-Flash as the Judge LLM for the FACT framework. This
choice enables us to maintain high evaluation reliability while managing operational costs effectively.

D Data Collection Timeframes for Evaluated Models

The data for the commercial models evaluated in this paper were collected during specific timeframes in 2025, as
detailed in Table 5. These dates indicate when the model outputs used in our experiments were generated.

Table 5: Data Collection Timeframes for Evaluated Models (2025)
Model Category / Provider Group Data Collection Date Range

Deep Research Agents (DRAs)
OpenAI Deep Research April 1 – May 8
Gemini 2.5 Pro Deep Research April 27 – April 29
Perplexity Deep Research April 1 – April 29
Grok Deeper Search April 27 – April 29

LLM with Search Tools (Grouped by Provider)
Claude Models (w/Search) May 12 – May 13
Perplexity Models May 11 – May 12
GPT Models (w/Search) May 11 – May 12
Gemini Models (Grounding/w/Search) May 12 – May 13

E Detailed Calculation of Citation Metrics

This appendix provides the detailed definitions and calculation methods for the Citation Accuracy (C. Acc.) and Average
Effective Citations per Task (E. Cit.) metrics used within the FACT framework.

Let T denote the set of all tasks in the benchmark, and |T | be the total number of tasks. For each task t ∈ T :

• Let Ut be the set of unique statement-URL pairs extracted for task t after the deduplication process.
• Let Nu,t = |Ut| be the total number of unique statement-URL pairs for task t that undergo support judgment.
• For each statement-URL pair in Ut, a support judgment is rendered, which can be either ’support’ or ’not

support’.
• Let Ns,t be the number of statement-URL pairs that are judged as ’support’ for task t.

E.1 Citation Accuracy (C. Acc.)

Citation Accuracy (C. Acc.) assesses the Deep Research Agent’s (DRA) ability to accurately apply retrieved information
for precise statements. It is calculated by first determining the proportion of ’support’ statement-URL pairs for each
individual task, and then averaging these per-task accuracies across all tasks in the benchmark.

The accuracy for a single task t, denoted as Acct, is defined as:

Acct =

{
Ns,t

Nu,t
if Nu,t > 0

0 if Nu,t = 0
(4)
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This definition ensures that tasks for which the agent produces no citable statements (i.e., Nu,t = 0) contribute an
accuracy of 0 to the overall average, reflecting a failure to provide supported information for that task.

The overall Citation Accuracy (C. Acc.) is then computed as the average of these per-task accuracies over all tasks in
the benchmark:

C. Acc. =
1

|T |
∑
t∈T

Acct (5)

E.2 Average Effective Citations per Task (E. Cit.)

Average Effective Citations per Task (E. Cit.) evaluates, on average, how much useful and relevant information the
agent retrieves and correctly supports with evidence for each task. It is computed by summing the total number of
’support’ statement-URL pairs across all tasks and then dividing by the total number of tasks in the benchmark.

The Average Effective Citations per Task (E. Cit.) is calculated as:

E. Cit. =
∑

t∈T Ns,t

|T |
(6)

This metric provides a direct measure of the average quantity of verifiably supported statements an agent generates per
task.

F Detailed Calculation of Human Consistency Metrics

This appendix provides the detailed calculation methods for the four metrics used to validate the consistency between
our RACE framework and human judgment, as introduced in Section 4.3.2.

F.1 Pairwise Agreement Rate

The Pairwise Agreement Rate measures the proportion of report pairs (across all tasks) where the evaluation method’s
preference matches the human preference.

For each of the Nt = 50 tasks in our study, four generated deep research reports result in Np =
(
4
2

)
= 6 unique pairs

per task. Human preference for each pair (e.g., Report A is better than Report B, or they are tied) is established from
the average overall scores assigned to each report by three domain experts.

Let I(t, p) be an indicator function for task t and pair p:

I(t, p) =
{
1 if the method’s preference matches the human preference for pair p of task t

0 otherwise.
(7)

The Pairwise Agreement Rate is then calculated as:

Pairwise Agreement Rate =

∑Nt

t=1

∑Np

p=1 I(t, p)
Nt ×Np

. (8)

This metric reflects the evaluation method’s reliability in replicating human comparative judgments.

F.2 Overall Pearson Correlation

This metric quantifies the linear relationship between average model scores from the evaluation method and those from
human experts, aggregated across all Nt = 50 tasks.

Let X be a vector of average scores per model (e.g., for the different DRAs evaluated) obtained from our method,
aggregated across all tasks. Let Y be the corresponding vector of average scores per model, obtained from human
experts and aggregated across all tasks. The Overall Pearson Correlation is the standard Pearson correlation coefficient
r(X,Y ) calculated between these two vectors. This reflects the overall score correlation between the method and
human experts for the evaluated DRAs.
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F.3 Filtered Average Pearson Correlation

This metric calculates the average of per-task Pearson correlations (rt) between the method’s scores and mean human
scores, specifically on tasks where human judgment is more consistent.

Given that human scores are from a limited number of experts (k = 3) for the n = 4 reports per task, expert
inconsistencies can affect task-level metric stability. To mitigate this, tasks are filtered based on inter-rater reliability
using the Intraclass Correlation Coefficient (ICC). For each task, ICC(1,1) (a one-way random effects model) is
computed from the k = 3 human experts’ scores for the n = 4 reports:

ICC(1, 1) =
MSB − MSW

MSB + (k − 1)MSW
, (9)

where MSB is the mean square between reports and MSW is the mean square within reports. Tasks with poor inter-rater
reliability (e.g., ICC(1, 1) < 0) are excluded. This yields a filtered subset of Nfiltered tasks, denoted as Tfiltered (37 in our
experiments).

The Filtered Average Pearson correlation is then the average of per-task Pearson correlations (rt) between the method’s
scores and mean human scores over Tfiltered:

Filtered Avg Pearson =
1

Nfiltered

∑
t∈Tfiltered

rt. (10)

This procedure provides a more robust assessment of absolute-score correlation.

F.4 Filtered Average Spearman Correlation

Using the same filtering method and the subset Tfiltered, this metric evaluates model ranking consistency.

For each task t ∈ Tfiltered, the Spearman rank correlation coefficient ρt is calculated between model rankings derived
from our evaluation method and those from average human scores. The Filtered Average Spearman Correlation is then
the average of these ρt values:

Filtered Avg Spearman =
1

Nfiltered

∑
t∈Tfiltered

ρt. (11)

This reflects how well the method preserves relative model ordering compared to humans, specifically on tasks with
more consistent human judgments.

G Experiment Detail

G.1 Human Evaluation Effort

The human evaluation process required a considerable investment of time to ensure a thorough assessment. On average,
each expert annotator spent approximately 1.5 hours per query to evaluate the reports from the four agents. This
meticulous process culminated in a total of 225 person-hours of human evaluation across all tasks and annotators. This
substantial effort yielded a robust and reliable dataset of human judgments, serving as the basis for our analysis of
human consistency.

G.2 Configuration of LLMs with Web Search Tools

To ensure a standardized and comparable evaluation environment for Large Language Models (LLMs) equipped with
built-in web search tools, the following configurations were uniformly applied:

• Thinking Budget/Computational Resources: For models that support a configurable “thinking budget” or
a similar computational resource limit for generation, this was uniformly set to a high value, equivalent to
16,000 tokens where applicable. This allowed models ample processing capacity for complex queries.

• Search Context Size: In cases where models offered a parameter to control the amount of information
retrieved and utilized from web searches (e.g., the search_context_size option as found in the Perplexity
AI API), this was consistently set to “high”. This configuration aimed to maximize the contextual information
available to the LLM from its search activities.
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• Maximum Search Iterations: The maximum number of web search queries, or “search turns,” permitted
during the generation process was standardized to five for all LLMs that provided such a configurable limit.
This ensured a comparable depth of web exploration across these models.

• Output Length: To accommodate potentially comprehensive responses while maintaining consistency, the
maximum output token limit for all LLMs was set to 36,000 tokens. If a model’s inherent maximum output
capacity was less than 36,000 tokens, its specific native maximum limit was adhered to.

• Citation Formatting and Standardization: A critical aspect of our methodology was the standardization of
citation presentation to facilitate consistent downstream evaluation, particularly when employing frameworks
like FACT for factual assessment. Citations as provided by each LLM were parsed in accordance with their
respective official API documentation. Subsequently, the generated reports were systematically restructured:
citation markers were inserted in the format ‘[1][2]‘ at the end of the relevant sentences, and a consolidated
’References’ list, compiling all unique cited sources, was appended to the conclusion of each article. This
uniform approach to citation structure was essential for equitable and rigorous factual verification.

These standardized settings were implemented to minimize variability arising from differing default configurations and
to enable a more direct comparison of the models’ capabilities in the context of deep research tasks.

H Prompt Templates

Clean Article Prompt

<system_role>
You are a professional article editor who is good at cleaning and refining article content.
</system_role>
<user_prompt>
Please help me clean the following research article, removing all citation links, citation marks (such as [1], [2],
1, 2, etc. or other complex citation formats), reference lists, footnotes, and ensuring the content is coherent and
smooth. Keep all other original content of the article, removing only the citations. If the content of the citation
mark is used as part of a sentence in the article, keep the text content and remove other marks.
Article content: "{article}"
Please return the cleaned article in full, without adding any additional comments or explanations.
</user_prompt>

Generate Dynamic Dimension Weight Prompt

<system_role>
You are an experienced research article evaluation expert. You excel at deeply understanding the objectives,
challenges, and core value points of specific research tasks, and based on this, setting dynamic, reasonable,
and well-supported dimension weights for subsequent article quality assessment.
</system_role>
<user_prompt>
There is a deep research task as follows:
<task>
"{task_prompt}"
</task>
<instruction>
Background: The research team will conduct in-depth and comprehensive research based on the ‘<task>‘
above and ultimately produce a high-quality research article.
Your Task: As an evaluation expert, you need to set the evaluation criteria weights for this specific ‘<task>‘ for
our assessment team. The evaluation will be conducted across the following four dimensions:

1. Comprehensiveness: The breadth, depth, and relevance of information coverage.
2. Insight: The depth, originality, logic, and value of the analysis and conclusions.
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3. Instruction Following: Whether the report accurately and completely responds to all requirements
and constraints of the task.

4. Readability: Clarity of structure, fluency of language, effectiveness of data presentation, and overall
ease of understanding.

Evaluation Formula: Total Score = Comprehensiveness * Comprehensiveness Weight + Insight * Insight
Weight + Instruction Following * Instruction Following Weight + Readability * Readability Weight. (Note:
The sum of all weights must be exactly 1.0)
Core Requirements:

1. In-depth Task Analysis: Carefully study the specific content of the ‘<task>‘, its implicit goals,
potential difficulties, and the core value of its outcomes.

2. Dynamic Weight Allocation: Based on your analysis, assign weights to the four dimensions (use
decimals between 0 and 1, e.g., 0.3). The key is to understand that different tasks have different
focuses, and weights must be flexibly adjusted according to task characteristics, not fixed.

3. ...
</instruction>
<examples_rationale>
The following two examples are provided to demonstrate how to adjust evaluation dimension weights and
explain the reasons based on changes in task nature. Please focus on learning the thinking logic and
analytical methods in these examples, rather than simply imitating their content or weight values.
</examples_rationale>
<example_1>
<task>
"Analyze the feasibility of investing in electric vehicle (EV) charging infrastructure in suburban areas."
</task>
<output>
<analysis>
This task’s core is to provide a clear feasibility analysis for a specific investment. The value lies in the
thoroughness of the assessment and the practicality of its conclusions. Therefore, evaluation emphasizes insight
and comprehensiveness.

• Insight (0.35): The task requires a deep analysis of feasibility, including market demand, costs,
competition, and regulatory landscape. The quality of the strategic recommendations derived from this
analysis is key.

• ...
</analysis>
<json_output>
{{ "comprehensiveness": 0.30, "insight": 0.35, "instruction_following": 0.20, "readability": 0.15 }}
</json_output>
</output>
</example_1>
Please strictly follow the above instructions and methods. Now, begin your work on the following specific task:
<task>
"{task_prompt}"
</task>
Please output your ‘<analysis>‘ and ‘<json_output>‘.
</user_prompt>
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Generate Comprehensiveness Criteria Prompt

<system_role>
You are an experienced research article evaluation expert. You excel at breaking down abstract evaluation
dimensions (like "Comprehensiveness") into actionable, clear, and task-specific criteria, assigning appropriate
weights and justifications for each.
</system_role>
<user_prompt>
Background: We are evaluating a deep research article written for the following task across four dimensions:
Comprehensiveness, Insight, Instruction Following, and Readability.

1. Comprehensiveness: The breadth, depth, and relevance of information coverage.
2. Insight: The depth, originality, logic, and value of the analysis and conclusions.
3. Instruction Following: Whether the report accurately and completely responds to all requirements

and constraints of the task.
4. Readability: Clarity of structure, fluency of language, effectiveness of data presentation, and overall

ease of understanding.
<task>
"{task_prompt}"
</task>
<instruction>
Your Goal: For the Comprehensiveness dimension of this research article, develop a set of detailed, specific,
and highly task-relevant evaluation criteria. You need to:

1. Analyze Task: Deeply analyze the ‘<task>‘ to identify key information areas, perspectives, and depths
that must be covered to achieve "comprehensiveness."

2. Formulate Criteria: Based on the analysis, propose specific evaluation criteria items.
3. Explain Rationale: Provide a brief explanation (‘explanation‘) for each criterion, stating why it is

important for assessing the comprehensiveness of this ‘<task>‘.
4. ...

Core Requirements:
1. Task-Centric: Analysis, criteria, explanations, and weights must directly relate to the core require-

ments and characteristics of the ‘<task>‘.
2. Well-Justified: The ‘<analysis>‘ section must clearly articulate the overall thinking behind setting

these criteria and weights, linking it to the ‘<task>‘. The ‘explanation‘ for each criterion must justify
its specific relevance.

3. ...
</instruction>
<example_rational>
The following example demonstrates how to formulate comprehensiveness criteria based on task require-
ments. Focus on learning the thinking logic and analytical methods from this example, not just imitating its
content or weight values.
</example_rational>
<example>
<task>
"Analyze the impact of remote work trends on commercial real estate in major US cities and recommend
investment strategies."
</task>
<output>
<analysis>
To comprehensively evaluate a research article on "the impact of remote work on commercial real estate in
major US cities and recommended investment strategies," considerations must span multiple dimensions. This
task has a dual objective: first, to analyze the market impact, and second, to propose actionable investment
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strategies based on this analysis. Therefore, a comprehensive assessment must ensure the article covers key
drivers of change in commercial real estate due to remote work, and thoroughly examines various investment
approaches.
Specifically, evaluation criteria need to cover:

1. Remote Work Trends & Adoption Data: Coverage of current and projected remote/hybrid work
models, adoption rates across industries and demographics.

2. Impact on Commercial Real Estate Sectors: Analysis of effects on office, retail, and industrial
spaces, including vacancy rates, leasing trends, and property valuations in major US cities.

3. Geographical Variations: Examination of how impacts differ across various major US cities (e.g.,
tech hubs vs. financial centers, downtown vs. suburban).

4. ...
Weight allocation should be balanced between the impact analysis (remote work trends, sector impacts,
geographical variations) and the investment strategy section, as both are critical to fulfilling the task. Within
impact analysis, specific sector impacts and geographical variations are key to actionable insights.
</analysis>
<json_output>
[
{{
"criterion": "Analysis of Remote Work Trends and Adoption",
"explanation": "Assesses if the article thoroughly examines current and projected remote/hybrid work models,
adoption statistics across different industries, and demographic factors influencing these trends. This forms the
basis of the impact analysis.",
"weight": 0.15
}},
{{
"criterion": "Comprehensive Coverage of CRE Sector Impacts",
"explanation": "Evaluates if the article details the impact on various commercial real estate (CRE) sectors
(office, retail, industrial, etc.), including data on vacancy rates, rental trends, and property valuations in major
US cities.",
"weight": 0.20
}},
{{
"criterion": "Examination of Geographical Variations and Nuances",
"explanation": "Checks if the article analyzes how the impact of remote work on CRE differs across various
major US cities, considering their unique economic structures and demographic profiles.",
"weight": 0.15
}},
{{
"criterion": "Discussion of Broader Economic and Social Consequences",
"explanation": "Assesses coverage of wider implications, such as effects on urban planning, transportation,
local economies dependent on office workers, and ancillary businesses.",
"weight": 0.10
}},
...
]
</json_output>
</output>
</example>
Please strictly follow the above instructions and methods. Now, begin your work on the following specific task:
<task>
"{task_prompt}"
</task>
Please output your ‘<analysis>‘ and ‘<json_output>‘.
</user_prompt>
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Score Prompt In RACE(Full)

<system_role>
You are a strict, meticulous, and objective research article evaluation expert. You excel at using specific
assessment criteria to deeply compare two articles on the same task, providing precise scores and clear
justifications.
</system_role>
<user_prompt>
Task Background
There is a deep research task, and you need to evaluate two research articles written for this task. We will assess
the articles across four dimensions: Comprehensiveness, Insight, Instruction Following, and Readability. The
content is as follows:
<task>
"{task_prompt}"
</task>
Articles to Evaluate
<article_1>
"{article_1}"
</article_1>
<article_2>
"{article_2}"
</article_2>
Evaluation Criteria Now, you need to evaluate and compare these two articles based on the following
evaluation criteria list, providing comparative analysis and scoring each on a scale of 0-10. Each criterion
includes an explanation, please understand carefully.
<criteria_list>
{criteria_list}
</criteria_list>
<Instruction>
Your Task
Please strictly evaluate and compare ‘<article_1>‘ and ‘<article_2>‘ based on each criterion in the ‘<criteria_-
list>‘. You need to:

1. Analyze Each Criterion: Consider how each article fulfills the requirements of each criterion.
2. Comparative Evaluation: Analyze how the two articles perform on each criterion, referencing the

content and criterion explanation.
3. Score Separately: Based on your comparative analysis, score each article on each criterion (0-10

points).

Scoring Rules
For each criterion, score both articles on a scale of 0-10 (continuous values). The score should reflect the quality
of performance on that criterion:

• 0-2 points: Very poor performance. Almost completely fails to meet the criterion requirements.
• 2-4 points: Poor performance. Minimally meets the criterion requirements with significant deficiencies.
• 4-6 points: Average performance. Basically meets the criterion requirements, neither good nor bad.
• 6-8 points: Good performance. Largely meets the criterion requirements with notable strengths.
• 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the criterion requirements.

Output Format Requirements
Please strictly follow the ‘<output_format>‘ below for each criterion evaluation. Do not include any other
unrelated content, introduction, or summary. Start with "Standard 1" and proceed sequentially through all
criteria:
</Instruction>
<output_format>
{{
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"comprehensiveness": [
{{
"criterion": [Text content of the first comprehensiveness evaluation criterion],
"analysis": [Comparative analysis],
"article_1_score": [Continuous score 0-10],
"article_2_score": [Continuous score 0-10]
}},
{{
"criterion": [Text content of the second comprehensiveness evaluation criterion],
"analysis": [Comparative analysis],
"article_1_score": [Continuous score 0-10],
"article_2_score": [Continuous score 0-10]
}},
...
],
"insight": [
{{
"criterion": [Text content of the first insight evaluation criterion],
"analysis": [Comparative analysis],
"article_1_score": [Continuous score 0-10],
"article_2_score": [Continuous score 0-10]
}},
...
],
...
}}
</output_format>
Now, please evaluate the two articles based on the research task and criteria, providing detailed comparative
analysis and scores according to the requirements above. Ensure your output follows the specified ‘<output_-
format>‘ and that the JSON format is parsable, with all characters that might cause JSON parsing errors properly
escaped.
</user_prompt>
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Static Score Prompt

<system_role>
You are a strict, meticulous, and objective research article evaluation expert.
You excel at using specific assessment criteria to deeply compare two articles on the same task, providing
precise scores and clear justifications.
</system_role>
<user_prompt>
Task Background
There is a deep research task, and you need to evaluate two research articles written for this task.
We will assess the articles across four dimensions: Comprehensiveness, Insight, Instruction Following, and
Readability.
The content is as follows:
<task>
"{task_prompt}"
</task>
Articles to Evaluate
<article_1>
"{article_1}"
</article_1>
<article_2>
"{article_2}"
</article_2>
Evaluation Criteria
Now, you need to evaluate and compare these two articles based on the following fixed evaluation criteria list,
providing comparative analysis and scoring each on a scale of 0-10.
Each criterion includes an explanation, please understand carefully.
<criteria_list>
Comprehensiveness
[ {{ "criterion": "Information Coverage Breadth",
"explanation": "Evaluates whether the article covers all key areas and aspects related to the topic without
omitting important information.",
"weight": 0.25
}},
{{
"criterion": "Information Depth and Detail",
"explanation": "Evaluates whether the article provides sufficiently detailed information rather than just surface-
level overviews.",
"weight": 0.25
}},
... ]
Insight
[ {{ "criterion": "Analysis Depth and Originality",
"explanation": "Evaluates whether the article provides deep analysis and original insights rather than simply
repeating known information.",
"weight": 0.25
}},
...
]
...
</criteria_list>
<Instruction>
Your Task
Please strictly evaluate and compare ‘<article_1>‘ and ‘<article_2>‘ based on each criterion in the ‘<criteria_-
list>‘.
You need to:
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1. Analyze Each Criterion: Consider how each article fulfills the requirements of each criterion.
2. Comparative Evaluation: Analyze how the two articles perform on each criterion, referencing the

content and criterion explanation.
3. Score Separately: Based on your comparative analysis, score each article on each criterion (0-10

points).
Scoring Rules
For each criterion, score both articles on a scale of 0-10 (continuous values).
The score should reflect the quality of performance on that criterion:

• 0-2 points: Very poor performance. Almost completely fails to meet the criterion requirements.
• 2-4 points: Poor performance. Minimally meets the criterion requirements with significant deficiencies.
• 4-6 points: Average performance. Basically meets the criterion requirements, neither good nor bad.
• 6-8 points: Good performance. Largely meets the criterion requirements with notable strengths.
• 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the criterion requirements.

Output Format Requirements
Please strictly follow the ‘<output_format>‘ below for each criterion evaluation.
Do not include any other unrelated content, introduction, or summary.
Start with "Standard 1" and proceed sequentially through all criteria:
</Instruction>
<output_format>
{{
"comprehensiveness": [
{{
"criterion": [Text content of the first comprehensiveness evaluation criterion],
"analysis": [Comparative analysis],
"article_1_score": [Continuous score 0-10],
"article_2_score": [Continuous score 0-10]
}},
{{
"criterion": [Text content of the second comprehensiveness evaluation criterion],
"analysis": [Comparative analysis],
"article_1_score": [Continuous score 0-10],
"article_2_score": [Continuous score 0-10]
}},
...
], "insight": [
{{
"criterion": [Text content of the first insight evaluation criterion],
"analysis": [Comparative analysis],
"article_1_score": [Continuous score 0-10],
"article_2_score": [Continuous score 0-10]
}},
...
],
...
}}
</output_format>
Now, please evaluate the two articles based on the research task and criteria, providing detailed comparative
analysis and scores according to the requirements above.
Ensure your output follows the specified ‘<output_format>‘ and that the JSON format is parsable, with all
characters that might cause JSON parsing errors properly escaped.
</user_prompt>
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Point-wise Score Prompt

<system_role>
You are a strict, meticulous, and objective research article evaluation expert.
You excel at using specific assessment criteria to thoroughly evaluate research articles, providing precise scores
and clear justifications.
</system_role>
<user_prompt>
Task Background
There is a deep research task, and you need to evaluate a research article written for this task.
We will assess the article across four dimensions: Comprehensiveness, Insight, Instruction Following, and
Readability.
The content is as follows:
<task>
"{task_prompt}"
</task>
Article to Evaluate
<target_article>
"{article}"
</target_article>
Evaluation Criteria
Now, you need to evaluate this article based on the following evaluation criteria list, providing analysis and
scoring each on a scale of 0-10.
Each criterion includes an explanation, please understand carefully.
<criteria_list>
{criteria_list}
</criteria_list>
<Instruction>
Your Task
Please strictly evaluate ‘<target_article>‘ based on each criterion in the ‘<criteria_list>‘.
You need to:

1. Analyze Each Criterion: Consider how the article fulfills the requirements of each criterion.
2. Analysis and Evaluation: Analyze the article’s performance on each criterion, referencing the content

and criterion explanation, noting strengths and weaknesses.
3. Score: Based on your analysis, score the article on each criterion (0-10 points).

Scoring Rules
For each criterion, score the article on a scale of 0-10 (continuous values).
The score should reflect the quality of performance on that criterion:

• 0-2 points: Very poor performance. Almost completely fails to meet the criterion requirements.
• 2-4 points: Poor performance. Minimally meets the criterion requirements with significant deficiencies.
• 4-6 points: Average performance. Basically meets the criterion requirements, neither good nor bad.
• 6-8 points: Good performance. Largely meets the criterion requirements with notable strengths.
• 8-10 points: Excellent/outstanding performance. Fully meets or exceeds the criterion requirements.

Output Format Requirements
Please strictly follow the ‘<output_format>‘ below for each criterion evaluation.
Do not include any other unrelated content, introduction, or summary.
Start with "Standard 1" and proceed sequentially through all criteria:
</Instruction>
<output_format>
{{
"comprehensiveness": [
{{
"criterion": [Text content of the first comprehensiveness evaluation criterion],
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"analysis": [Analysis],
"target_score": [Continuous score 0-10]
}},
{{
"criterion": [Text content of the second comprehensiveness evaluation criterion],
"analysis": [Analysis],
"target_score": [Continuous score 0-10]
}},
...
],
"insight": [
{{
"criterion": [Text content of the first insight evaluation criterion],
"analysis": [Analysis],
"target_score": [Continuous score 0-10]
}},
...
],
...
}}
</output_format>
Now, please evaluate the article based on the research task and criteria, providing detailed analysis and scores
according to the requirements above.
Ensure your output follows the specified ‘<output_format>‘ and that the JSON format is parsable, with all
characters that might cause JSON parsing errors properly escaped.
</user_prompt>

30



Vanilla Prompt

<system_role>
You are a strict, meticulous, and objective research article evaluation expert.
You excel at using specific assessment criteria to thoroughly evaluate research articles, providing precise scores
and clear justifications.
</system_role>
<user_prompt>
Task Background
There is a deep research task, and you need to evaluate a research article written for this task.
<task>
"{task_prompt}"
</task>
Article to Evaluate
<target_article>
"{article}"
</target_article>
<Instruction>
Your Task
Please evaluate the overall quality of the above ‘<target_article>‘ as a response to ‘<task>‘.
Please provide an overall score between 0 and 10.
Also, provide a brief justification for your score.
Output Format Requirements
Please strictly follow the ‘<output_format>‘ below for your evaluation result.
Do not include any other unrelated content, introduction, or summary.
</Instruction>
<output_format>
{{ "overall_score": [Continuous score 0-10], "justification": "[Scoring justification]" }}
</output_format>
Now, please evaluate the article based on the task and provide your score and justification according to the
specified format.
Ensure your output is valid JSON format and escape any special characters as needed.
</user_prompt>
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